Even: Polarity & Scope.

Kyle Blumberg & Sam Carter November 21, 2022

1 Basics

Even's contribution is limited to the level of NAI content.

- (1) (Even) Mary sang well.
- (2) a. Anna even introduced $[PAUL]_F$ to Sue.
 - b. Anna even introduced Paul to $[Sue]_F$.

In simple unnegated sentences, even is associated with one reading.

(1) Even Mary sang well.

Scalar Presupposition: $\forall p \in ALT((1)) : p \geq [[1]]$. (Eqv.: Mary is the least likely person in ALT(Mary) to sing well).

Additive Presupposition: $\forall p \in ALT((1)) : p \neq [[1]] \rightarrow p$. (Eqv.: Everyone else in ALT(Mary) sang well).

Under (clausemate) negation, the contribution of even differs.

(3) Not even Mary sang well.

Scalar Presupposition: $\forall p \in ALT((1)) : p \leq [(1)]$. (Eqv.: Mary is the most likely person in ALT(Mary) to sing well).

Additive Presupposition: $\forall p \in ALT((1)) : p \neq [[(1)]] \rightarrow \neg p$. (Eqv.: No-one else in ALT(Mary) sang well).

The exact content of the scalar/additive presuppositions is unclear.

- (4) Spain didn't even make it into the [QUARTER-FINALS]_F. \Rightarrow making it to QFs is more plausible than making it to R16.
- (5) I'm surprised Jo didn't like the film. Afterall, even $[BoB]_F$ liked it. \Rightarrow Jo liked the film.

We'll distinguish between two readings associated with even.

'MIN'-Reading: Minimal Scalar Presupposition

 $\forall p \in \text{Alt}(\phi) : \llbracket \phi \rrbracket \leq p$

Positive Additive Presupposition

 $\forall p \in \mathsf{Alt}(\phi): p \neq [\![\phi]\!] \to p$

'MAX'-Reading: Maximal Scalar Presupposition

 $\forall p \in \mathrm{Alt}(\phi) : [\![\phi]\!] \geq p$

Negative Additive Presupposition

 $\forall p \in ALT(\phi) : p \neq \llbracket \phi \rrbracket \to \neg p$

We'll adopt a paradigm in which the two readings are associated with the following scalar presuppositions.

(6) Sara solved even Q2. \checkmark MIN = Q2 is <u>hardest</u>

XMAX = Q2 is <u>easiest</u>

(7) Sara didn't solve even Q2.
MIN Q2 is hardest

✓Max Q2 is <u>easiest</u>

2 A Puzzle about Distribution

Interestingly, the two readings are not in complementary distribution.

A. Questions

(8) Did Sara solve even Q2?
✓MIN/✓MAX
(9) a. Didn't Sara solve even Q2?
✓MIN/✓ MAX
b. Did Sara not solve even Q2?
✓MIN/✓MAX

B. Conditionals

- (10) If a student solves even Q2, they'll receive a passing grade. \checkmark Min/ \checkmark Max
- (11) Solve even Q2 and you'll receive a passing grade. \checkmark MIN/ \checkmark MAX
- (12) Suppose you solve even Q2. Then you'll receive a passing grade. ✓ MIN/✓ MAX
- (13) If you don't solve even Q2, you won't receive a passing grade. ✗MIN/✓MAX

C. Inquisitive Attitudes

(14) a. I wonder if Sara solved even Q2. ✓MIN/✓MAX
(15) a. Katie guessed whether Sara would solve even Q2. ✓MIN/✓MAX
b. You know whether Sara solved even Q2. ✓MIN/✓MAX
c. The examiner decides whether Sara solves even Q2. ✓MIN/✓MAX

D. Doxastic Attitudes

(16) I think San	ra solved even Q2.	✓MIN/ X MAX
(17) I doubt Sa	ra solved even Q2.	✓MIN/✓MAX
(18) I think San	ra didn't solve even Q2.	X MIN/ ✓ MAX

E. Adjectives

(19) (20)	It seems likely that Sara will solve even Q2. It seems unlikely that Sara will solve even Q2.	✓MIN/ X MAX ✓MIN/ ✓ MAX
(21)	a. It doesn't seem likely that Sara will solve even Q2.b. It seem likely that Sara won't solve even Q2.	✓MIN/✓MAX ✓MIN/✓MAX

3 Polarity & Scope

Rooth (1985) posits that *even* is ambiguous between:

- A non-polarity sensitive particle, which contributes
 - a minimal scalar presupposition; and
 - a positive additive presupposition.
- An NPI, which contributes
 - a maximal scalar presupposition; and
 - a negative additive presupposition.

Karttunen & Peters (1979) (followed by Wilkinson (1996) and Crnic (2012)) posit that even is univocal. It contributes only:

- a minimal scalar presupposition; and
- a positive additive presupposition.

The idea is that, by taking scope, even associates with different alternatives. So, where $Alt(3)=\{x \ did \ not \ sing \ well \ | \ x \in Alt(Mary) \}$, we obtain the following presuppositions:

Minimal scalar Mary is the least likely person in ALT(Mary)

presupposition: to not sing well;

Positive additive Everyone else in Alt(Mary) did not sing well.

presupposition:

The scope proposal struggles to explain the availability of a Max-reading of (14). To obtain the Max-reading, even must take scope over the attitude verb.

 $ALT((14)) = \{I \text{ wonder whether Sara solved } x \mid x \in ALT(Q2)\}$

Minimal scalar I am less likely to wonder whether Sara solved presupposition: Q2 than I am to wonder if she solved any other

question in ALT(Q2);

Positive additive For each other question in ALT(Q2), I wonder whether Sara

presupposition: solved that question.

4 Positive Proposal

We suggest that *even* is ambiguous between:

- A PPI, which contributes
 - a minimal scalar presupposition;
 - a positive additive presupposition.
- An NPI, which contributes
 - a maximal scalar presupposition;
 - a negative additive presupposition.

The distribution of PPIs/NPIS aligns closely with the availability of readings of even.

- (22) Luís met with [some/??any] students.
- (23) Luís didn't meet with [??some/any] students.

A. Questions

- (24) Did Luís meet with [some/any] students today?
- (25) a. Didn't Luís meet with [some/%any] students today?
 - b. Did Luís not meet with [%some/any] students today?

B. Conditionals

- (26) If Luís has met with [some/any] students today, he'll still be in his office.
- (27) a. Solve [some/any] questions and you'll do get a passing grade.
 - b. Suppose you solve [some/any] questions. Then you'll get a passing grade.
- (28) If Luís hasn't met with [??some/any] students today, he won't be in his office.

C. Inquisitive Attitudes

- (29) a. I wonder whether Luís met with [some/any] students today.
 - b. Katie guessed whether Luís would meet with [some/any] students today.
 - c. You know whether Luís met with [some/any] students today.
 - d. The Dean decided whether Luís met with [some/any] students today.

D. Doxastic Attitudes

- (30) a. I doubt that Luís met with [any/% some] students today.
 - b. I think that Luís met with [??any/some] students today.
 - c. I think that Luís didn't meet with [any/??some] students today.

E. Adjectives

- (31) a. It is unlikely that Luís met with [some/any] students today.
 - b. It is likely that Luís met with [some/??any] students today.
 - c. It is likely that Luís didn't meet with [??some/any] students today.

Environment	Min	Max	some	any
Bare	✓	X	✓	X
ClausemateNeg	X	✓	X	✓
Questions	✓	✓	✓	✓
Questions + ClMateNeg	X	✓	% X	1
Questions + NonClMateNeg	✓	% x	✓	% √
Conditionals	✓	✓	✓	1
Conditionals + ClMate¬	X	✓	X	1
Inq.Attitudes	✓	✓	✓	1
thinks	✓	X	✓	X
doubts	% √	✓	% /	✓
thinks+ Neg	X	✓	X	/
likely	✓	X	✓	X
unlikely	✓	✓	✓	1
likely+ Neg	X	✓	X	1

5 Further Issues

5.1 Entanglement

Homer (2021) argues that although PPIs/NPIs are in non-complementary distribution, they exhibit entanglement.

- (32) a. Did someone steal something?
 - b. Did anyone steal anything?
 - c. ? Did anyone steal something?
 - d. ? Did someone steal anything?
- (33) a. Have you already eaten something?
 - b. Have you eaten anything yet?
 - c. ? Have you already eaten anything?
 - d. ? Have you eaten something yet?

The Min/Max readings are constrained in exactly the way Homer predicts.

(34)	a. Did even Claire steal something?	✓MIN/ X MAX
	b. Did even Claire steal anything?	X MIN/ ✓ MAX
(35)	a. Did you already solve even Q2?	✓MIN/ X MAX
	b. Did you solve even Q2 yet?	X MIN/ ✓ MAX

5.2 What Kind of Polarity Item?

Polarity items come in different kinds, depending on the environments in which they are licensed.

	NPIs	PPIs
Weak	$any, \ ever$	$some,\ never$
Strong	yet, anymore, in weeks	already, still
Minimizers	at all, a single, one bit	?

Weak NPIs and minimizers, unlike strong NPIs, are licensed in conditionals.

- (36) a. If you have [ever been to/ any interest in] Malaysia, watch this documentary. Weak NPIs
 - b. If you care about koalas [$\underline{\text{at all}}/\underline{\text{one bit}}$], give money to this charity. Minimizers
 - c. If Mary has visited [?? <u>in weeks/?? yet]</u>, she'll have left a note. Strong NPIs

Weak/strong NPIs, unlike minimizers, are licensed in comparatives.

- (37) a. Gary is happier than he has [ever been/any right to be].
 - b. Rita is happier than she [has been <u>in weeks</u>/admitted yet].
 - c. Toni is happier than [?? <u>a single one</u> of her students/??her students are <u>at all</u>].
- (38) Steve is happier than even Gabe is.

✓MIN/XMAX

Unlike weak/strong NPIs, negative polarity minimizers are associated with negative bias in polar questions (Guerzoni (2004); Roelofsen (2018)).

- (39) a. Did Paula give a single dollar to koalas?
 - b. Do the administration care in the slightest?
 - c. Did you win any money at all?

The same is not true of (unstressed) weak/strong NPIs.

(40) Did you [ever] go to Tasmania [yet]?

5.3 Emotive Attitudes

- (40) has reading on which it is associated with a maximal scalar presupposition.
- (41) I am glad that I solved even Q2.
 - \Rightarrow I did not solve any other questions.

There is independent reason to think that *even* must sometimes be able to take scope (even on the polarity approach).

- (42) a. Although nobody solved every question, none of the problems were too hard for the entire class.

Not all presupposition triggers project out of alternatives.

- (43) Context: On my previous trip to France, I only visited Paris.

 On this trip I went to Marseilles. I went to Lyon. I even went to Paris again.
- (44) I've always enjoyed spicy and bitter food. Recently, I've even started to enjoy sour food.

Hypothesis: the presuppositions of alternatives do not project under even.

(41) I am glad that I solved even Q2.

Minimal scalar It is less likely I would be happy to solve Q2

presupposition: than to solve any other question;

Positive additive For each other question, I would be happy to

presupposition: solve that question.

By positing that even can take scope, we can also speculate about a contrast which arises in questions.

(45) a. Did Sara solve even Q2?
✓ MIN/✓MAX
b. Did Sara even solve Q2?
✓ MIN/✓MAX

(46) a. Someone solved even Q2. ✓ even>∃

b. Someone even solved Q2. ? $even>\exists$

 $\neg > \exists$

(47) a. ?? Mary hasn't arrived already.

b. ?? Luís didn't speak to someone.

If the PPI-containing clause in (45.a) contains a negative polarity licensing item, then the PPI take scope above it to be licensed.

(45) a. Did Sara solve even Q2?

b. Did Sara even solve Q2?

However, where *even* attaches to the VP this isn't possible, meaning the MIN-reading is blocked in (45.b).

References

- Crnic, Luka. 2012. Focus Particles and Embedded Exhaustification. *Journal of Semantics*, **30**(Nov.), 533–558.
- Giannakidou, Anastasia. 2007. The Landscape of EVEN. Natural Language & Linguistic Theory, 25(1), 39–81.
- Guerzoni, Elena. 2004. Even-NPIs in YES/NO Questions. Natural Language Semantics, ${\bf 12}(4)$, 319–343.
- Homer, Vincent. 2021. Domains of Polarity Items. *Journal of Semantics*, $\mathbf{38}(1)$, 1-48.
- Karttunen, Lauri, & Peters, Stanley. 1979. Conventional Implicature. Syntax and semantics, 11(Jan.), 1–56.
- Roelofsen, Floris. 2018 (Nov.). Negative Polarity Items in Questions.
- Rooth, Mats. 1985. Association with Focus. Ph.D. thesis.
- Rullmann, Hotze. 1997. Even, Polarity, and Scope. 25.
- Wilkinson, K. 1996. The Scope of Even.