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Abstract

This paper develops a novel account of communication with epistemic
modals. §2 introduces a range of conditions on modal communication. §§3-4
provide a taxonomy of existing theories and identify important limitations
on their adequacy. §5 introduces a new kind of theory, which supplements a
broadly informational approach to epistemic modality with a generalization
of AGM revision. In addition to demonstrating that this theory satisfies
each of the conditions on modal communication identified in §2, I prove a
representation theorem for the revision operation and show that it validates
a generalized version of the Levi Identity.

1 Introduction
Communication, at an appropriate level of abstraction, can be understood as
information change. For a core vocabulary of basic expressions, we have a simple
and seemingly satisfying theory of how information is exchanged in conversation.
An agent utters a sentence which she accepts and which encodes the message
she wishes to communicate in its content. Her audience—assuming they are
credulous—will then modify their own information on the basis of this content,
with the result that they come to accept the sentence uttered.

Elegant as it is, this theory runs into difficulty explaining the communicative
effects of epistemic modals. Even when overtly focused on facts about commu-
nication, existing theories of epistemic modality have largely failed to address
the way agents update in response to learning about what must or may be the
case. (For examples of sophisticated theories which do address this issue, see in
particular Hawke & Steinert-Threlkeld (2018) and Rothschild & Yablo (2021),
discussed in §3.2.2).

This paper sets out to extend the simple theory of communication to a modal
language. It has three parts. The first part identifies a number of descriptive
and theoretical conditions which it would be nice for a theory of modal com-
munication to satisfy (§2). The second, negative, part of the paper presents
an informal taxonomy of existing theories (§3), and provides proofs in a more
formal setting that neither dynamic theories nor a common sub-class of static
theories can satisfy all of the desiderata (§4). The third part of the paper de-
velops the positive proposal. I show (§5) that it is possible to develop a form of
static theory which satisfies each of the desiderata in §2 while avoiding the is-
sues in §4. This theory combines a conservative generalization of AGM revision
(Alchourrón et al. (1985)) with a family of theories of epistemic modals which
agree on some basic constraints (Veltman (1996); Yalcin (2007, 2011); Santo-
rio (2018); Hawke & Steinert-Threlkeld (2018, 2020); Gillies (2020); Goldstein
(2021); Rothschild & Yablo (2021)). §6 is the conclusion.
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2 Epistemic Modals in Communication
There’s been a theft at the seminary. Based on your initial investigation, you
think that it was either the Abbot or the Bishop who did it. However, before
accusing anyone, you enlist the services of a professional detective. Consider a
(non-exhaustive) list of things the detective could tell you:

(1) It was the Abbot.
(2) It must have been the Abbot.
(3) It can’t have been the Bishop.
(4) It might have been the Cardinal.

Here are two observations about the kind of change in information each of these
reports would elicit: first, the effects of updating on (1), (2) and (3) are the
same. In response to an assertion of any of the first three sentences, a credulous
agent ought to rule out the possibility that the Bishop did it. Second, the effect
of updating on (4) is different. In response to an assertion of the latter sentence,
a credulous agent ought to rule in the possibility that the Cardinal did it. Put
another way, in coming to accept one of the first three sentences an agent can
acquire new information; in coming to accept the fourth sentence, however, she
can only lose information (cf. Stalnaker (2014, 48)).

This pattern forms the basis of the puzzle we’ll be exploring. Where ϕ belongs
to the non-modal fragment of the language, the following four conditions offer
a generalization of our observations about the specific case above.1

Transparency Updating on ϕ and on �ϕ have the same effect on an agent’s
information.

Duality Updating on ¬3ϕ and on �¬ϕ have the same effect on an
agent’s information.

Strength Updating on �ϕ never makes a (coherent) agent’s informa-
tion (strictly) weaker than it was previously.

Weakness Updating on 3ϕ only ever makes an agent’s information
(non-strictly) weaker than it was previously.

Transparency says that embedding a non-modal sentence under an epistemic
necessity modal doesn’t changes its effect on an audience’s information. In our
example, this amounts to the requirement that updating on (1) and (2) changes
your information in the same way. Duality says that epistemic necessity modals
and epistemic possibility modals are duals with respect to their effects on an au-
dience’s information. In combination with Transparency, this amounts to the
requirement that (3) changes your information in the same way as (1) and (2).2

1We’ll get clearer on the syntactic details of the language in question later, in §4. For now,
it suffices that ϕ belongs to the non-modal fragment iff it contains no instances of 3 or �.

2Assuming, at least, that in the context in which your information leaves open only Abbot
and Bishop possibilities, ‘It can’t have been the Bishop’ will have the same effect as ‘It can’t
have not been the Abbot’.
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Strength says that updating with an statement of epistemic necessity never
merely leads to giving up information (unless you’re incoherent to start with).
Together with Duality and Transparency, it implies that, if updating on (1)-
(3) has a non-trivial effect, the resulting information will rule out something
which was previously ruled in. Weakness says that updating with a statement
about epistemic possibility never leads to acquiring information. It implies that
if updating on (4) has a non-trivial effect, the resulting information will rule in
something that was previously ruled out (and will not rule out anything that
was previously ruled in). Each of these four descriptive conditions seems inde-
pendently plausible. When combined, however, they have the additional virtue
of predicting exactly the pattern of behavior exhibited by (1)-(4).

Two features of the kind of communication we are considering are worth em-
phasizing. First, it is crucial to our initial case that it is a case of deference:
whatever report the detective makes, it is assumed that you (the audience) will
update your information on their assertion accordingly. Second, it is important
that we are aiming to characterize only the essential effects of assertion on the
audience’s information (Stalnaker (1978, 2002)). An assertion’s essential effect
is the change that an audience member must make to their information to count
as having accepted it. This need not—and typically will not—be the totality of
information which an audience is able to extract from the fact that it occurred.
An assertion of (4), for example, may well put its audience in a position to infer
a range of new information about the speaker, such as the kind of evidence she
possesses, the language she speaks, and so on. However, communicating this
information is not part of its essential effect. An audience member who failed
to add to her information that the speaker speaks English would not thereby
count as failing to accept the assertion.

The effect of update can characterized in terms of an update rule: a procedure
which, given an arbitrary sentence and a prior information state, returns a
new information state (representing the effect of learning the former in the
latter). The four descriptive conditions, above, impose constraints on a rule’s
extension. However, we can also consider theoretical constraints on how the
rule is calculated. The following, in particular, will play an important role in
guiding our investigation.

Content The effect of updating on ϕ is a function of the content of ϕ and
the agent’s prior information.

Content says that update is semantic—to identify the effect of a given update,
we need only consider an agent’s prior information and the content of the ex-
pression she is updating on. This ensures that any two sentences with the same
content will have the same effect on an agent’s information; it excludes, for ex-
ample, the possibility that the effect of a sentence on an agent’s information can
vary simply according to whether or not it belongs to the modal or non-modal
fragment of the language.

The strongest argument in favor of Content is that it is one of the core compo-
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nents of a simple theory of communication for non-modal languages. According
to this theory, agents updating on a utterance simply make the minimal modifi-
cation to their information necessary to ensure that it incorporates the content
of the sentence uttered (Lewis (1969); Stalnaker (1978); Bach & Harnish (1979);
Gardenfors (1988)). Update on an utterance can therefore be subsumed under
the more general activity of information change, with the content of the sentence
uttered playing the role of incoming information.

This picture of communication is elegant, intuitive and widely endorsed. As
such, it would be nice to have a theory which extends it to epistemic modality.
The problem is that, on some of the most common approaches to theorizing
about epistemic modals, it is in tension with our initial observations about
communication with epistemic modals. In fact, as I show in §§3-4, both dynamic
and propositional theories are incapable of satisfying the combined packed of
Transparency, Duality, Strength, Weakness and Content without lapsing
into triviality.

Of course, none of these conditions are beyond dispute. Any of them could
reasonably be rejected were the costs of satisfying it shown to be sufficiently
great. One response to the results below would be to argue that we should set our
sights lower—we should not expect a successful theory of modal communication
to satisfy all five conditions. Indeed, nothing that we have said so far has
established that they are even mutually consistent.

My primary aim, in what follows, is to argue that we can be more ambitious. I’ll
show how a theory which satisfies all the conditions above can be constructed.
This theory offers a generalization of AGM revision to non-propositional theo-
ries of epistemic modality (such as Veltman (1985); Yalcin (2007, 2011); Hawke
& Steinert-Threlkeld (2018, 2020), and Rothschild & Yablo (2021)). An im-
portant upshot of this is that we can, if we want, extend the simple picture of
communication-as-information-change to epistemic modality. The paper con-
cludes with a representation theorem (Theorem 1), which establishes the con-
sistency of the theory and shows how it can be understood intuitively in terms
of a sequence of fallback information states an agent could occupy.

3 Taxonomy
Theories of modal communication come in two kinds: dynamic theories and
propositional theories. The two differ in their division of labour between seman-
tic content and update rules. According to dynamic theories, the content of a
sentence itself determines an update on information. According to static theo-
ries, in contrast, an update rule must be specified independently of sentences’
contents.
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3.1 Dynamic Theories
On dynamic theories of modal communication, the content of a sentence is an
operation on information. As Groenendijk & Stokhof (1991a) put it:

“The meaning of a sentence does not lie in its truth conditions,
but rather in the way it changes [...] the information of the in-
terpreter”(43)

The guiding idea behind dynamic theories is that instructions on how an agent
is to change her information in response to an utterance are encoded directly
in the content of the sentence uttered. Accordingly, such theories can offer an
extremely simple update rule:

Dynamic Update The effect of updating on ϕ is the result of applying the
content of ϕ to the agent’s prior information.

Dynamic theories face a choice about the type of operations they treat as the
content of sentences. In update semantics (Veltman (1996)),3 these operations
are assumed to be deterministic. Applying the same operation to the same in-
put always returns the same result. Nothing in our characterization of dynamic
theories requires this, however (see Hoare (1969)). Willer (2018) proposes per-
mitting non-deterministic operations as the content of sentences in order to
model free choice effects. In this framework, the content of a disjunction may
return more than one output, given the same input.

Any deterministic dynamic theory which adopts Dynamic Update will evi-
dently satisfy Content. However, existing dynamic theories do less well with
the four descriptive conditions. Update semantics fails to satisfy both Trans-
parency and Weakness. The same holds of more sophisticated theories, such
as Willer (2013) or Willer (2018).As we will see later (§4), this is no coincidence.
In fact, no non-trivial dynamic theory is capable of satisfying all five conditions.

3.2 Static Theories
According to static theories, the content of a sentence is not an operation on
information. As such, the associated update rules take on a more significant role.
Static theories come in two kinds: propositional theories and non-propositional
theories.

3.2.1 Propositional Static Theories
On propositional theories, the content of a sentence is a proposition. Propo-
sitions are information (Stalnaker (1984, 1999)). They are the kind of objects
which rule some ways things could be in and rule other ways things could be
out. In this way, propositional theories represent sentential contents as objects

3See also Groenendijk & Stokhof (1991b); Groenendijk et al. (1996); van der Does et al.
(1997); Beaver (2001); Gillies (2001, 2020); Willer (2015).
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of the same type as an agent’s information state. The approach to update these
theories adopt varies according to how they go on to characterize those objects.

On the meta-semantic approach defended by Lewis (1979b) and Stalnaker (2014),
propositions are identified with properties of worlds (or, less neutrally, with sets
of worlds). They are objects which take a stance on the way the world is (and
on nothing else). Sentences in the modal fragment of the language are assumed
to be context-sensitive: which proposition they express can vary depending on
the information possessed by the speaker (Kratzer (1977, 1981, 2012)).

According to proponents of the meta-semantic approach, modal communication
proceeds indirectly. When an agent updates on a modal statement like (2) or (4),
she does not simply add its content to her information (as she would for a non-
modal sentence like (1)). Instead, she does something a bit more sophisticated:
she modifies her own information to make it the case that, were she to utter the
same sentence, its contextually determined content would be true. For example,
in updating on the statement that it might have been the Cardinal, an agent
who entertains only the Abbot and the Bishop as suspects will have to rule in
some other ways the world might be.

Meta-semantic approaches to a propositional static theory are capable of accom-
modating all four descriptive conditions. However, Content fails, since update
on a modal sentence is sensitive, not to the content the sentence in fact has,
but rather to the content it would have in different counterfactual contexts. Ac-
cordingly, updating on modal and non-modal sentences with the same content
can have different effects.

The primary alternative is a relativist approach (defended by Egan et al. (2005);
Egan (2007, 2018); Stephenson (2007a,b)). Relativists agree that objects of the
same type—propositions—play the role both of sentential contents and agents’
information states. However, they identify propositions, not with sets of worlds,
but with properties of individuals (or, less neutrally, sets of centered worlds
Lewis (1979a)).They are objects which take a stance not only on the way the
world is, but also the way a person is situated within it. Thus, agents who agree
on what the world is like but disagree about what information they possess
about it will be represented as endorsing distinct propositions.

Within this richer space of propositions, Egan argues, update can proceed via
a single rule (Egan (2007, 2018)). Any differences in the effects of update on
modal and non-modal sentences are due to differences in content. In updating
on (1), an agent changes her view on how the world is—taking the Abbot to be
guilty. In contrast, in updating an (2), she changes her view on the information
she possesses—taking herself to be the kind of agent who rules anybody but the
Abbot’s guilt.

Relativist approaches are designed to satisfy Content. However, like dynamic
theories, they are incapable of satisfying all four descriptive conditions: Weak-
ness fails, since the information of an agent who takes herself to rule out ϕ will
not become weaker as a result of updating on 3ϕ. Transparency is also liable
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to fail. Since ϕ and �ϕ differ in content, updating on them can be expected to
have different effects on an agent’s information.

In §4 we will show that, again, this is no coincidence. Any adequate non-
propositional static theory must either give up one of the five conditions or
make its update rule trivial (in one of two ways).

3.2.2 Non-Propositional Static Theories
On non-propositional theories, the content of a sentence is neither information
itself nor an operation on information. The space of possible non-propositional
theories is large. However, existing theories have largely coincided in identifying
contents with properties of information. That is, contents are the kinds of thing
which rule some ways an agent’s information could be in and rule others ways
it could be out.

Hawke & Steinert-Threlkeld (2018) give a non-propositional theory with an
important property: update is sensitive to the syntactic structure of the sentence
updated on. Their proposed update rule is designed to satisfy each of our
four descriptive conditions. However, in doing so it fails to satisfy Content.
Updating on two sentences with the same content can have different effects on
an agent’s information.4

An alternative non-propositional static theory is developed in Rothschild &
Yablo (2021).5 Rothschild & Yablo’s theory is designed to satisfy Strength and
Weakness. However, their main focus is on issues more fine-grained than those
discussed above. In particular, they are interested in explaining which of the
weakenings of an agent’s information state is returned by updating on 3ϕ. They
achieve this by allowing for failures of Content. Specifically, the theory offers
separate update rules for 3- and �-embedded sentences, respectively. These
rules state the effect on the agent’s information not in terms of the content of the
sentence itself, but rather the content of its prejacent. Rothschild & Yablo do not
intend these rules to extend to update with boolean embeddings of non-modal
and modal sentences, since their primary aim is to explain the communicative
effects of sentences with modals at widest scope. As they observe, their update
rules therefore cover only a partial fragment of the language.

Non-propositional static theories face significant obstacles in satisfying all of
our conditions on a theory of modal communication. However, in contrast to
dynamic and propostitional static theories, they are not, in principle, incapable
of doing so. In §5, I will defend a form of non-propositional theory which meets
these requirements. Before turning to this theory, however, it will be helpful to
introduce a formal framework for thinking about information change.

4For example, 3ϕ ∧3(ϕ ∧ ψ) and 3(ϕ ∧ ψ) have the same content according to Hawke &
Steinert-Threlkeld (2018). However, they are associated with different update effects.

5Rothschild & Yablo (2021) offer their semantics as part of an account of the communica-
tive effects of deontic, not epistemic, modals. However, as previously argued in Yablo (2011),
many of the issues raised have the same structure.
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4 The Flow of Information
To theorize about information change, we introduce a class of objects: informa-
tion states. An information state corresponds to a particular view about how
things are: it rules some ways things could be out and rules other ways things
could be in. Anything that represents things as being a particular way can be
represented by an information state. Maps and minds, movies and manuscripts,
myths and mime: all belong to kinds of things information states can be used to
model. We, however, will employ information states to theorize about just two
kinds of things: the contents of sentences and the contents of agents’ attitudes.

Information states can be ordered by strength. Where s and s′ are information
states, s ≤ s′ iff every way things could be which is ruled out by s′ is also
ruled out by s. In this case, we say that s is at least as strong as s′ or that s
incorporates s′. The stronger an information state is, the more comprehensive
the view to which it corresponds.

s ∧ s′ and s ∨ s′ are the meet and join of s and s′, respectively. s ∧ s′ is the
weakest state which is stronger than both s and s′ (i.e., their unique greatest
lower bound). s ∨ s′ is the strongest state which is weaker than both s and s′

(i.e., their unique least upper bound).

An information structure is an ordered set of information states meeting certain
conditions (cf. Gardenfors (1988); van Benthem (1986, 1996)).

Definition (Information Structures).

An information structure Σ = ⟨S,≤⟩ is a pair of a countable set of infor-
mation states S = {s, s′, ...} and well-founded partial order, ≤, forming a
bounded complemented distributive lattice. That is:

• S has a least element, ⊥, and greatest element, ⊤.

• Every s ∈ S has a unique complement, s: the state such that s ∧ s = ⊥
and s ∨ s = ⊤.

• For any s, s′, s′′ ∈ S: s ∧ (s′ ∨ s′′) = (s ∧ s′) ∨ (s ∧ s′′).

Intuitively, each information structure corresponds to an exhaustive collection
of possible views about how things are. Since it is distributed, bounded, and
complemented, each information structure is a boolean algebra. Since ≤ is well-
founded, it is also a complete boolean algebra. That is, every S ⊆ S has a
unique greatest lower bound,

∧
S, and a unique least upper bound,

∨
S.

The next thing we need is a language with a modal and a non-modal fragment.

Definition (Language).

• L is the smallest set containing A = {A,B,C, ...} ∪ {T,

T

} (the set of
sentential atoms) which is closed under boolean operators (¬, ∧, ∨) and
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modal operators (3,�).

• L−, the non-modal fragment of L, is the smallest set containing A which
is closed under the boolean operators.

Equipped with the notions of an information structure and a language, we can
now compare different theories of how updating on sentences of the language
changes an agent’s information. In addition to an information structure, each
such theory will have two further components: an interpretation of L (mapping
sentences to contents) and an update rule (mapping information states and sen-
tences to information states). In the following two subsections, we will evaluate
the prospects of different types of theory satisfying the five conditions.

4.1 Propositional Static Theories
Propositional static theories take the contents of sentences to be information
states. A propositional static interpretation function, J·K, maps sentences of L to
states in an information structure. In a propositional static theory, the boolean
constants correspond to boolean operations within an information structures.
Negation is identified with complementation (i.e., J¬ϕK=JϕK), conjunction with
meet (i.e., Jϕ∧ψK = JϕK∧JψK) and disjunction with join (i.e., Jϕ∨ψK = JϕK∨JψK).
The tautology and the contradiction denote top and bottom, respectively (i.e.,JTK = ⊤ and J TK = ⊥). We will not make any assumptions about interpretation
of the modal fragment of the language, since this may vary across different
propositional theories.

A propositional theory aiming to satisfy Content will need to state its update
rule in terms of a function which takes a pair of information states as inputs
and outputs another information state. That is, it should provide an operation
which tells us, if we start in one state, s, and update on a sentence with the
content s′, what state we will end up in. We can think of such an operation as
describing a particular way to move through an information structure.

An appealing thought is that information change should proceed in a minimally
disruptive manner (Levi (1977); Makinson (1985)). Revision, under its AGM
characterization, is an attempt at implementing this idea (Alchourrón et al.
(1985)).

Definition (AGM Revision).

∗ is a revision operation iff ∗ satisfies (∗1)-(∗4):

(∗1) s ∗ s′ ≤ s′

(∗2) ⊥ < s ∗ s′ if s′ ̸= ⊥;
(∗3) s ∗ s′ = s ∧ s′ if s ∧ s′ ̸= ⊥;
(∗4) s ∗ (s′ ∧ s′′) = (s ∗ s′) ∧ s′′ if (s ∗ s′) ∧ s′′ ̸= ⊥.

AGM revision provides an attractively simple update rule for non-modal com-
munication. In updating on ϕ ∈ L−, an agent revises her current information
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with its content; if her old information was s, her new information will be s∗JϕK.
It is easy to see, however, that this update rule will not extend to modal com-
munication. Consider some non-modal ϕ such that 3ϕ has some non-extremal
state, s, as its content. That is, ⊥ < s < ⊤.Then take any s′ such that s∧s′ < s′.
By (∗1) and (∗3), we know that s′ ̸≤ s′ ∗ s; that is, revising s′ with the content
of 3ϕ returns a state either strictly stronger than or incomparable with s′. But
Weakness says that updating any information state on 3ϕ should return a
state at least as weak. So Weakness will fail.

In fact, we can prove something more general. Say that a theory is successful
iff the result of updating on ϕ incorporates JϕK. Update via AGM revision
is successful (by (∗1)). But many weaker revision operations will suffice to
guarantee a theory is successful, too.6 Say that a theory is boring iff, for any
ϕ ∈ L− and any non-absurd state, the result of updating on ϕ in that state is
the same the result of updating either on T or on T. Boring theories hold that
as long as you are in a non-absurd state, any non-modal sentence you update
on will have the same effect as learning something trivial or inconsistent. Given
these definitions, we can identify an important limitation of propositional static
theories (proof in appendix, §I).

Fact 1. Any successful propositional static theory which satisfies all five
conditions is boring.

Fact 1 says that any propositional static theory meeting the rest of our desider-
ata must choose between being boring and failing to be successful. Boring
theories effectively trivialize the notion of update. On the other hand, any
propositional static theory which fails to be successful must deny either (i) that
update with ϕ returns an information state at which ϕ is accepted or (ii) that
ϕ is accepted at an information state only if that information state incorpo-
rates the content of ϕ. Accordingly, it is worth looking to see whether other
approaches can do any better.

4.2 Dynamic Theories
Dynamic theories take the contents of sentences to be operations on information
states. A dynamic interpretation function, [·], maps sentences of L to functions
in S → S (for a designated information structure). Update proceeds according
to Dynamic Update: the result of updating on ϕ while in s is s[ϕ] (where,
following convention, s[ϕ] is [ϕ] applied to s). We will assume that every dynamic
interpretation function associates the tautology with the identity operation on
states. That is, for all s, s[T] = s.

For a concrete example, consider the most familiar dynamic theory for L: update
semantics (Veltman (1996)).Where v is a function from A into a designated

6Theories strictly weaker than AGM which nevertheless guarantee that s⊙s′ ≤ s′ include
Shear & Fitelson (2019)’s lockean theory of revision, Lin & Kelly (2012)’s stability theory and
Goodman & Salow (2021, 2023b,a, ms)’s normality-based theory.
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information structure Σ, such that v(T) = ⊤ and v(

T

) = ⊥:

Definition (Update Semantics).

• s[A] = s ∧ v(A)

• s[¬ϕ] = s ∧ s[ϕ]

• s[ϕ ∨ ψ] = s[ϕ] ∨ s[ψ]

• s[ϕ ∧ ψ] = s[ϕ][ψ]

• s[3ϕ] =
{

s if s[ϕ] ̸= ⊥;

⊥ otherwise.

• s[�ϕ] =
{

s if s[ϕ] = s;

⊥ otherwise.

Update semantics, paired with an appropriate notion of consequence, generates
a non-classical logic in which non-contradicition and excluded middle fail (Man-
delkern (2020)). However, it does retain some classical properties. In particular,
its interpretation of the boolean operators is congruent: semantic equivalence is
invariant under negation, conjunction and disjunction (cf. Humberstone (1995,
2001)). For any ϕ, ψ ∈ L : (i) [ϕ] = [ψ] iff [¬ϕ] = [¬ψ]; and (ii) [ϕ]=[ψ] iff for
all χ ∈ L, [ϕ ∨ χ] = [ψ ∨ χ] and [ϕ ∧ χ] = [ψ ∧ χ]. We will say that a theory is
congruential iff its interpretation of the boolean operators is congruent.

It is easy to see that update semantics does not satisfy all four of our descrip-
tive conditions. In particular, Transparency and Weakness both fail. Where
ϕ ∈ L−, update on ϕ and �ϕ can have different effects on an agent’s information
state. And update on 3ϕ can take an agent to a strictly stronger information
state.7 In fact we can again prove something more general (building on obser-
vations in Rothschild & Yablo (2021, §12)). Fact 2 identifies an important
limitation on dynamic theories (proof in appendix, §I).

Fact 2. Any congruential dynamic theory which satisfies all five conditions
is boring.

I argued above that a theory must avoid being boring on pain of trivializing
update. Should we expect a dynamic theory to be congruential, as well?

Congruence amounts to the requirement that boolean operations preserve same-
ness and difference in semantic content. Although this is an important feature
of classicality, dynamic theorists might, under pressure, learn to live with its
failure. However, giving up congruence is insufficient by itself. Any dynamic
theory on which negation is compositional (i.e., if [ϕ] = [ψ] then [¬ϕ] = [¬ψ])
and which retains equivalence under double negation (i.e., [ϕ] = [¬¬ϕ]) will be
unable to meet all five conditions without being boring. Giving up either of
these properties would be quite radical. Worse, it would be radical while also
unmotivated. No data involving epistemic modals suggest that negation might
be non-compositional or we should embrace failures equivalence under double
negation. Accordingly, any dynamic theory will have to accept substantial costs
of some kind.

7Specifically, if ⊥ < s[ϕ] < s, then s[�ϕ] ̸= s[ϕ] and if ⊥ = s[ϕ] < s, then s[3ϕ] < s.
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5 Modal Revision
Both propositional static and dynamic theories face significant limitations. We
have seen that, to satisfy our five conditions, they must choose between trivializ-
ing their update rule or imposing undesirable constraints on their interpretation
functions. A theory which avoids these problems should be at a notable theo-
retical advantage.

In this section, I show how a theory can be developed which satisfies each of the
five conditions without incurring the same costs. At a high level of abstraction,
this theory has two component parts: a semantics yielding a particular pattern of
acceptance (§5.1) and mechanism for information change based around a series
of ‘fallback’ information states (§5.2). As I show, any theory whose semantics
and update rule has these properties will be in a position to satisfy our five
conditions.

5.1 Semantics
The theory starts with the idea that whether an agent accepts a sentence is
determined by its content and by what information she has. A semantics, sup-
plemented with an acceptance relation, tells us at what states a sentence is
accepted. We will focus, in particular, on a family of semantics for L which
exhibit a common set of acceptance properties. Call such semantics ‘informa-
tional’.

Definition (Informational Semantics).

A semantics (and associated acceptance relation) is informational iff, for any
ϕ ∈ L−:

Downward
Persistence

If �ϕ is accepted at an information state, then �ϕ is
accepted at every information state at least as strong.

Upward
Persistence

If 3ϕ is accepted at an information state, then 3ϕ is
accepted at every information state at least as weak.

Synchronic
Transparency

�ϕ is accepted at an information state iff ϕ is ac-
cepted at that information state.

Synchronic
Duality

�¬ϕ is accepted at an information state iff ¬3ϕ is
accepted at that information state.

Downward Persistence says that the set of states at which �ϕ is accepted is
downward closed: if it contains some state, s, it also contains any state which
rules out every way things could be which is ruled out by s. This reflects
the idea that someone accepts �ϕ iff her information state rules out any way
things could be in which ϕ is fails to be the case. Together with Synchronic
Transparency/Duality, the requirement implies that the set of states at which
ϕ and ¬3ϕ are accepted will also be downward closed. Upward Persistence
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says that the set of states at which 3ϕ is accepted is upward closed: if it contains
some state s, it also contains any information state which rules in any way things
could be which is ruled in by s. This reflects the idea that someone accepts 3ϕ
iff her information state rules in some way things could be in which ϕ is the
case.

Many non-propositional static semantics, supplemented with the appropriate
acceptance relation, are informational. For example, Yalcin (2007)’s domain se-
mantics exhibits all four properties, as does Hawke & Steinert-Threlkeld (2018,
2020)’s acceptance semantics and Santorio (2022)’s path semantics. Many dy-
namic semantics (including update semantics) are also informational semantics
when supplemented with a definition of acceptance in terms of fixed pointhood
(i.e. s accepts ϕ iff s[ϕ] = s). Thus, the problems faced by dynamic theories
are not, in the end, due to their account of content, but rather due to their
adoption of Dynamic Update as an update rule.

An informational semantics, by itself, is insufficient. None of the informational
systems above offer a theory of communication which satisfies our five condi-
tions. In the next subsection we’ll see how to construct an update rule which,
combined with any informational semantics on which acceptance is a function
of content, yields an adequate theory of modal communication. The generality
of this solution is important, since it establishes that the theory’s success is not
dependent on a specific choice of semantics, but instead on the properties of the
update rule.

5.2 Update
Our account of update will start with a simple idea, one familiar from the litera-
ture on revision (Levi (1977, 1980); Gärdenfors (1984); Gardenfors & Makinson
(1988); Grove (1988)). How an agent responds to incoming information depends
on how her prior information is structured. Different parts of her information
may be entrenched to different extents and she may, correspondingly, be more
readily disposed to give up some parts than others.

We can represent differences in how entrenched parts of an agent’s information
are using a ‘fallback’ order. For an agent in the information state s, her associ-
ated fallback order is a set of states, σ(s), such that: (i) s is the strongest state
in σ(s); and (ii) for any s′, s′′ ∈ σ(s), either s′ ≤ s′′ or s′′ ≤ s′. The idea is that
each state in the set represents the view about how things are that the agent
would adopt if forced to give up the information represented by the stronger
states in the set. Intuitively, a fallback order can be thought of as akin to a
system of spheres in the frameworks of Lewis (1973) and Grove (1988), with
information states in the fallback order occupying to role of individual spheres
in a sphere system. As an example, figure 1 depicts an information structure
and fallback order σ(s1) = {s1, s2, s4,⊤}. States in σ(s1) are shaded blue and
connected by dashed edges.

Here’s a rough outline of an update rule: in updating on ϕ, an agent starts
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s1

s2

s3

s4

S′

S

Figure 1: An information structure and fallback order.

by finding the strongest state in her fallback order which can be strengthened
into a non-absurd state at which ϕ is accepted. Call this state s′. The agent’s
new information state will be chosen from among the weakest states at which
ϕ is accepted which are at least as strong as s′. This process can be thought of
as implementing a form of minimal change: relative to her fallback order, the
agent gives up as little old information as possible and acquires as little new
information as possible.

As an example, consider the information structure in figure 1. Let S be the
downward closed set of information states in the region shaded dark gray. In
updating on a sentence accepted at (all and only) the states in this region, an
agent who is initially in s1 must first find the strongest state in the associated
fallback order which can be strengthened into a non-absurd state in S. That
state is s2. Her new state will then be among the weakest states in S which are
at least as strong as s2. The unique such state in figure 1 is s4. In contrast,
consider the effect of updating on a sentence accepted (at all and only) the
states in S′ (the upward closed set of information states in the region shaded
light gray). First, the agent will find the strongest state in her fallback order
which can be strengthened into a state in S′. That state is s3. But not only is
s3 the strongest such state, it is also the (unique) weakest state in S′ which is
at least as strong as s3. So, her new state will just be s3 itself.

Even with only an informal (and incomplete) outline, it is possible to see why
characterizing update in terms of a fallback order provides a path to satisfying
our four descriptive conditions.
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Whatever information state an agent is in, the first state in her fallback order is
her current state. But recall that, for any non-modal ϕ, the set of states at which
�ϕ is accepted on an informational semantics is downward closed. Suppose that
�ϕ is accepted at some state strictly weaker than the agent’s current state. Then
it will also be accepted at her current state. So the strongest state in her fallback
order which can be strengthened into a state at which �ϕ is accepted will be her
current state itself. And so updating with �ϕ will never result in a state strictly
weaker than an agent’s current state, ensuring Strength will be satisfied.

Next, recall that for any non-modal ϕ, the set of states at which 3ϕ is accepted
on an informational semantics is upward closed. Suppose that s′ is the strongest
state which can be strengthened into a state at which 3ϕ is accepted. Then 3ϕ
will also be accepted at s′. So s′ will be the unique weakest state at least as
strong as s′ at which 3ϕ is accepted. And so updating with 3ϕ will only ever
result in a state (non-strictly) weaker than an agent’s current state, ensuring
Weakness will be satisfied. Finally, on any informational semantics, ϕ and �ϕ
are accepted at the same states, as are �¬ϕ and ¬3ϕ. So, if the rule treats
expressions accepted at the same states alike, Transparency and Duality will
be satisfied.

This is all good. However, this outline falls short of uniquely characterizing
an update rule. The procedure described is not (yet) deterministic, since it
says only that the result of updating should belong to some (potentially non-
singleton) set. Nor is it complete, since it says nothing about what happens
when there is no non-absurd strengthening of a fallback state at which the
sentence is accepted.

With this in mind, we define a family of ‘hyper-revision’ operations which map
an information state and a property of information states to a new informa-
tion state. We can think of hyper-revision as a generalization of the notion of
revision discussed in §4.1. Revision models the effect of minimally changing
one information state so that it incorporates a second, specified, information
state. Hyper-revision, in contrast, models the effect of minimally changing an
information state so that has some specified property (or, equivalently, so that
it belongs to a specified set of information states).

Before we define hyper-revision, some useful notation: ↓s = {s′|s′ ≤ s} is the
set of states at least as strong as s. ↑s = {s′|s′ ≥ s} is the set of states at least
as weak as s. Derivatively, ↓S =

∪
s∈S ↓s and ↑S =

∪
s∈S ↑s. S = S/S is the

complement of S in the information structure.

Definition (Hyper-revision).

~ is a hyper-revision operation iff ~ satisfies (~1)-(~7):
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(~1) s~ S ∈ S ∪ {⊥} Success
(~2) s~ S > ⊥ if S ̸⊆ {⊥} Consistency
(~3) s~ S = s if s ∈ S and s > ⊥ Triviality
(~4) s~ S ∩ S′ = s~ S if s~ S ∈ S ∩ S′ Locality
(~5) s~ S ∩ S′ < s′ ≤ s~ S only if s′ ̸∈ S ∩ S′ Minimality
(~6) s~ S′ ≤ s~ ↑S if S′ ∩ ↓(s~ ↑S) ̸⊆ {⊥} Boundedness
(~7) s~ S ∩ S′ = (s~ S)~ S′ if ↓(s~ ↑S) ∩ (S ∩ S′) = ↓(s~ S) ∩ S′ ̸⊆ {⊥} Decomposition

Each of these conditions can be given an independent gloss, in terms of how
information should be expected to change in the course of coming to instantiate
some property. The first condition says that hyper-revision should be successful:
hyper-revising with a set of information states should take you to a state in
that set (or to the absurd state). The second condition says that hyper-revision
should be consistent: hyper-revising with a set of information states should
return a non-absurd state whenever the set contains a non-absurd state itself.
Together, the two conditions imply that s ~ S = ⊥ iff S is either empty or
singleton ⊥. The third condition says that hyper-revision should not make
unnecessary changes: if s is among the states in S, then hyper-revising with S
while in s should return s itself, unless s is absurd. The fourth condition says
that hyper-revision should be systematic: hyper-revising with any subset of S
which contains the result of hyper-revising with S should have the same effect
as hyper-revising with S. The fifth condition says that hyper-revision should
not introduce more information than necessary: if hyper-revising with a subset
of S returns a state at least as strong as the result of hyper-revising with S,
then it should be amongst the weakest states in that subset which are at least
as strong as the result of hyper-revising with S.

The sixth condition is perhaps less immediately obvious—however, it is crucial
to ensuring that hyper-revision implements the intuitive idea of a fallback order.
Let s′ be the result of hyper-revising with some upward closed set while in s. The
condition says that s′ must constitute an upper bound on other hyper-revisions
of s in a particular way: hyper-revising with any set containing non-absurd
states at least as strong as s′ will result in a state at least as strong as s′.
Informally, the idea is that in hyper-revising with an upward closed set, ↑S, an
agent will give up information until a fallback state is reached which belongs to
↑S. Accordingly, the condition encodes the proposal, above, that hyper-revising
with a set of states should return a strengthening of the first fallback state which
can be strengthened into a non-absurd member of that set.

The seventh condition says that hyper-revision should be incremental: hyper-
revising with S ∩ S′ should have the same effect as first hyper-revising with S
and then hyper-revising with S′, in the limiting case where: (i) the set of states
in S ∩ S′ which are stronger than the result of giving up the information in S
is the same as set of states in S′ which are stronger than the result of hyper-
revising with S, and (ii) there is at least one non-absurd state in each set. The
seventh condition ensures that, where there are multiple ways of strengthening
a fallback state to reach a state with the desired property, these choices are
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decided in a systematic way.

With our characterization of hyper-revision in hand, we can state the account
of update at the core of our theory. Update is defined in terms of hyper-revision
and acceptance in the obvious way:

Hyper-Revisional
Update

The effect of updating on ϕ is the result of hyper-
revising an agent’s prior information with the set of
states at which ϕ is accepted.

Hyper-Revisional Update serves as the basis for a theory of modal commu-
nication meeting all five of our conditions. Given any informational semantics
on which acceptance conditions are determined by content (which includes each
of the informational semantic theories discussed above), the theory will clearly
satisfy Content. An important upshot of this is that the theory will model
update, not only for modal-embedded sentences, but also arbitrary boolean
combinations of modal- and non-modal-sentences. Most significantly, any such
theory will also meet all four descriptive conditions.

Fact 3. Given any informational semantics, Hyper-Revisional Update
implies Transparency, Duality, Strength and Weakness.

Transparency and Duality follow immediately from the corresponding syn-
chronic properties of informational semantics, along with the fact that hyper-
revision is deterministic.

In this setting, Strength says that hyper-revising a non-absurd state with the
set of states at which �ϕ is accepted will never return a strictly weaker state (for
ϕ ∈ L−). To see why Strength holds, recall that hyper-revising with any set of
states returns either a state in that set (if the the set contains a non-absurd state)
or ⊥ (if it does not). But ⊥ is not strictly weaker than any state. So suppose
that �ϕ is accepted at some non-absurd state. By Downward Persistence,
we know that if �ϕ is accepted at some state strictly weaker than s, then it
is also accepted at s. And from (~3), we know that wherever s is non-absurd,
hyper-revising with a set of states containing s while in s will return s itself. So
hyper-revising with the set of states at which �ϕ is accepted will never take a
non-absurd state to one which is strictly weaker.

Weakness, in this setting, says that hyper-revising with the set of states at
which 3ϕ is accepted will only ever return a (non-strictly) weaker state (for
ϕ ∈ L−). To see why Weakness holds, observe that every state is non-strictly
weaker than ⊥. So suppose that s is non-absurd. Let s′ be the result of hyper-
revising, while in s, with the set of states at which 3ϕ is accepted. By Upward
Persistence, we know that this set is upward closed. So, by (~6), it follows
that hyper-revising while in s with any set which contains a non-absurd state
at least as strong as s′ will return a state at least as strong as s′. So consider
the result of hyper-revising while in s with {s, s′}. Again, we know that the
resulting state must be at least as strong as s′. But by (~3), given that s is
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non-absurd we know that revising it with {s, s′} will return s. Putting the two
together, it follows that s is at least as strong as s′. So hyper-revising with the
set of states at which 3ϕ is accepted will only ever return a state at least as
weak as one’s original state.

Hyper-revision is, in an important sense, a conservative extension of AGM revi-
sion. For any information state s, its downset, ↓s, is the set comprising all and
only those states which carry at least as much information as s. Hyper-revising
with ↓s can be thought of as making the minimal change required to reach a
state which incorporates s. Fact 4 says that, over such cases, hyper-revision
agrees with AGM. For any hyper-revision operation, we can find a correspond-
ing AGM revision operation such that hyper-revising on ↓s returns the same
state as revising with s (proof in appendix, §II).

Fact 4. For any hyper-revision operation, ~, there is some AGM revision
operation, ∗, such that for any s, s′ ∈ S: s~ ↓s′ = s ∗ s′.

Finally, we can show that hyper-revision implements in a precise manner the
informal idea of moving from an old state to a new state via a pair of successive
operations of weakening and strengthening. We establish this in two ways. First,
hyper-revision satisfies a generalized form of the Levi identity (Levi (1977)).
Just as hyper-revision generalizes AGM revision (Fact 4), we can identify cor-
responding operations generalizing AGM contraction and expansion (appendix,
§III). � and #+ denote operations of hyper-contraction and hyper-revision, re-
spectively. Hyper-contraction models the effect of giving up information to find
a fallback state which has strengthings lacking some specified property. Hyper-
expansion models the effect of adding information to find a state which has some
specified property. Crucially, hyper-revision with S is equivalent to sequentially
hyper-contracting with S and then hyper-expanding with S.

Second, hyper-revision describes a (deterministic, complete) version of the fall-
back based operation outlined above. Say that σ(s) is a fallback order associated
with s iff (i) s is the minimum element of σ(s); and (ii) σ(s) ⊆ S is totally or-
dered by ≤. Say that 4 is a refinement of ≤ iff (i) s ≤ s′ implies s 4 s′; and (ii)
S is totally ordered by 4. For any hyper-revision operation, there is a refinement
and a mapping of states to associated fallback orders which characterizes that
operation. Conversely, any refinement and mapping from states to associated
fallback orders will characterize some hyper-revision operation.

These observations are demonstrated by the following representation theorem
(appendix, §III).

Theorem 1. Given the axiom of choice, the following are equivalent:

(a) ~ is a hyper-revision operation;

(b) There is some � and #+ such that:

(i) � is a hyper-contraction operation;
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(ii) #+ is a hyper-expansion operation;
(iii) For all s, S: s~ S = (s� S) #+ S.

(c) There is some 4 and σ such that:

(i) 4 is a refinement of ≤;
(ii) σ is a function which maps each state to a fallback orders associated

with that state;
(iii) For all s, S: s~ S = Sup4(S ∩ ↓

∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}})

Theorem 1 says that (for some choice of �, #+ , σ and 4): s~S = (s�S) #+ S is
the result of (i) finding the least ŝi ∈ σ(s) which is weaker than some non-absurd
s′ ∈ S and (ii) returning the 4-maximal state in S which is stronger than ŝi.8

This theorem not only establishes that our seven conditions on hyper-revision are
consistent, it also shows exactly how each hyper-revision operation can be char-
acterized either in terms of a sequence of hyper-contraction and hyper-expansion
or in terms of a refinement and mapping from states to associated fallback or-
ders.

6 Conclusion
Epistemic modals present a challenge to our simple picture of communication.
I have set out to show how this challenge can be met within a non-propositional
static setting.

Many loose threads remain. Nothing has been said about how fallback orders are
determined. This means that fine-grained questions about which information
agents give up when hyper-revising with 3ϕ remain unresolved (cf. Rothschild &
Yablo (2021)). Equally, no account has been given of sequential updates. Ideally,
it would be good to extend the representation theorem to iterated hyper-revision
(cf. Boutilier (1993, 1996); Darwiche & Pearl (1997)). Still, in establishing that
the simple picture of communication can be extended to capture update on
individual sentences involving modals, we have made a significant first step.

8In the case where S ⊆ {⊥} (and, hence, there is no such least ŝi ∈ σ(s)), the theorem
says that s ~ S = ⊥.
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Appendix.
I. Where ◦ ∈ S(S×L) is a an update rule and | · | an interpretation function, we
can restate our five conditions on theories of communication as follows:

Definition (Conditions).

Content There is some ⊙ ∈ S(S×S) such that, for all ϕ ∈ L : s◦ϕ = s⊙|ϕ|.

Transparency s ◦ ϕ = s ◦�ϕ
Duality s ◦ ¬3ϕ = s ◦�¬ϕ
Strength s ≮ s ◦�ϕ or s = ⊥
Weakness s ≤ s ◦3ϕ.

if ϕ ∈ L−


We start by proving Fact 1. A theory is boring iff for all s > ⊥ and ϕ ∈ L−,
either s ◦ ϕ = s ◦ T or s ◦ ϕ = s ◦

T. A theory is successful iff s ◦ ϕ ≤ JϕK .

Consider a successful propositional static theory with an associated interpreta-
tion function, J·K, and information structure, Σ, which satisfies all five conditions.
Since the theory satisfies Content, there is some ⊙ ∈ S(S×S) such that, for all
ϕ ∈ L : s ◦ ϕ = s⊙ JϕK.
Suppose, for contradiction, that the theory is not boring. We’ll start by showing
that for some ψ ∈ L−, J3ψK ̸= ⊤. Given that it is not boring, there is some
ϕ ∈ L− and some s > ⊥ such that s ⊙ JϕK ̸= s ⊙ J TK. From Transparency,
we have that s ⊙ J�¬¬ϕK = s ⊙ J¬¬ϕK. Since JϕK = J¬¬ϕK, it follows that
s ⊙ J�¬¬ϕK ̸= s ⊙ J TK. But we know that s ⊙ J�¬¬ϕK = s ⊙ J¬3¬ϕK, by
Duality. So J¬3¬ϕK ̸= J TK = ⊥. Since J¬3¬ϕK = J3¬ϕK and ⊥ = ⊤, it
follows immediately that J3¬ϕK ̸= ⊤.

It follows that there is some s′ ∈ S such that s′ ̸≤ J3¬ϕK. Since the theory
is successful, s′ ⊙ J3¬ϕK ≤ J3¬ϕK. But, by Weakness, s′ ≤ s′ ⊙ J3¬ϕK. So
s′ ≤ J3¬ϕK, after all. Contradiction.

Next, we prove Fact 2. Consider a congruential dynamic theory with an asso-
ciated interpretation function, [·], and information structure, Σ, which satisfies
the five conditions.

Consider an arbitrary ϕ ∈ L−. By Transparency and Duality, we know
that [¬ϕ] = [�¬ϕ] = [¬3ϕ]. Since the theory is congruential, it follows that
[ϕ] = [3ϕ]. Next, assume, for reductio, that the theory is not boring. We know
that s[T] = s, for all s. So there must be some ϕ ∈ L− and s ̸= ⊥ such that
s[ϕ] ̸= s. We also know that, for all s, s[ϕ] = s[�ϕ] (by Transparency) and
s[�ϕ] ≤ s (by Strength). So it follows that s[ϕ] < s. Yet, since [3ϕ] = [ϕ],
s[3ϕ] < s, too. But, by Weakness, s ≤ s[3ϕ]. Contradiction. .

II. Our next task is to prove Fact 4:
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Fact 4. For any hyper-revision operation, ~, there is some AGM revision
operation, ∗, such that for any s, s′ ∈ S: s~ ↓s′ = s ∗ s′.

Proof: Let ⊙ : (S× S) → S be an operation such that s⊙ s′ = s~ ↓s′. We need
to prove that ⊙ is an AGM revision operation. That is, we must show that ⊙
satisfies (∗1−4)

First note that, for any s, s′ ∈ S, we know that s ⊙ s′ ∈ ↓s′ (by (~1)) and
s~ ↓ s′ = ⊥ only if s′ = ⊥ (by (~2)). So, it follows that ⊙ satisfies (∗1) and
(∗2).

Observe that {s′′ ∈ ↓s′|s′′ ≤ s} ̸⊆ {⊥} iff s ∧ s′ ̸= ⊥. Furthermore, we know
that if {s′′ ∈ ↓s′|s′′ ≤ s} ̸⊆ {⊥}, then s~ ↓s′ = Max{s′′ ∈↓ s′|s′′ ≤ s} = s ∧ s′
(by (~3), (~5) and (~6)). So it follows that ⊙ satisfies (∗3), too.

Finally, suppose that (s ⊙ s′) ∧ s′′ ̸= ⊥. We need to show that s ⊙ (s′ ∧ s′′) =
(s⊙ s′) ∧ s′′. By hypothesis, and the fact that ⊙ satisfies, (∗1), we can be sure
that s′ ̸= ⊥. So we know that s ~ ↓s′ = s ~ (↓s′ − {⊥}) (by (~2) and (~4)).
Observe that (↓s′ − {⊥}) ⊆ ↑(↓s′ − {⊥}) and let si = s~ ↑(↓(s′)− {⊥}). From
(~6), it follows that s ~ ↓s′ ≤ si. Furthermore, by (~5), s ⊙ s′ is amongst the
weakest elements of ↓s′ which are stronger than si. But s′ ∧ si is the unique
weakest such state. So s⊙ s′ = si ∧ s′.

Next, observe that if (s ⊙ s′) ∧ s′′ ̸= ⊥, then ↓(s′ ∧ s′′)) ∩ ↓si ̸⊆ {⊥}. So
s ~ ↓(s′ ∧ s′′) ≤ si, by (~6). By hypothesis, s′ ∧ s′′ ̸= ⊥. So we know that
s ~ ↓(s′ ∧ s′′) = s ~ (↓(s′ ∧ s′′) − {⊥}) (by (~2) and (~4)). Furthermore,
(↓(s′ ∧ s′′) − {⊥}) ⊆ ↑(↓s′ − {⊥}). So s ⊙ (s′ ∧ s′′) is amongst the weakest
elements of ↓(s′∧ s′′) which are stronger than si. But si∧ (s′∧ s′′) is the unique
weakest such state. So s⊙ (s′ ∧ s′′) = si ∧ (s′ ∧ s′′). But ∧ is associative: that
is, si ∧ (s′ ∧ s′′) = (si ∧ s′) ∧ s′′. So (s ⊙ s′) ∧ s′′ = s ⊙ (s′ ∧ s′′). So it follows
that ⊙ satisfies (∗4).

III. Before proving the representation theorem, we introduce some definitions.

Definition (Fall-Back Orders and Refinements). Let σ be mapping
of states to associated fallback orders iff, for all s:

∧
σ(s) = s and σ(s) ⊆ S

is totally ordered by ≤.

Let 4 be a refinement of ≤ iff s ≤ s′ implies s 4 s′ and S is totally ordered
by 4.

Definition (Hyper-contraction and Hyper-expansion).

� is a hyper-contraction operation iff � satisfies (�1)-(�5).
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(�1) ↓(s� S) ∩ S ̸⊆ {⊥} if S ̸⊆ {⊥}
(�2) s� S ≥ s
(�3) s� S = s if s ∈ ↑(S/⊥)
(�4) s� S ∩ S′ = s� S if S ∩ ↓(s� S ∩ S′) ̸⊆ {⊥}
(�5) s� S′ ≤ s� ↓S if S′ ∩ ↓(s� ↓S) ̸⊆ {⊥}

#+ is a hyper-contraction operation iff #+ satisfies (#+1)-(#+5).:

(#+1) s #+ S ∈ S ∪ {⊥}
(#+2) s #+ S = s if s ∈ S
(#+3) s #+ S ∩ S′ = s #+ S if s #+ S ∈ S ∩ S′

(#+4) s #+ S ∩ S′ < s′ ≤ s #+ S only if s′ /∈ S ∩ S′

(#+5) s #+ S ∩ S′ = (s #+ S) #+ S′ if ↓s ∩ (S ∩ S′) = ↓(s #+ S) ∩ S′ ̸⊆ {⊥}

To prove Theorem 1, we will prove that (a)⇒(b); (b)⇒(c); and (c)⇒(a).

(a)⇒(b): For an arbitrary hyper-revision operation, ~, let � and #+ be defined
such that:

s� S = s ∨ (s~ ↑(S/⊥))

s #+ S = s~ (↓s) ∩ S.

To prove that (a)⇒(b), we need to show that:

i. � is a hyper-contraction operation.

ii. #+ is a hyper-expansion operation.

iii. For all s, S : s~ S = (s� S) #+ S.

i. We start by proving the following lemma.

Lemma 1. s� S =

{
s~ ↑(S/⊥) if S ̸⊆ {⊥};
s otherwise.

Proof : Let s′ = s ~ ↑(S/⊥). Suppose that S ̸⊆ {⊥}. Then by (~2), it follows
that {s, s′} ∩ ↓s′ ̸⊆ {⊥}. So, by (~6), s~ {s, s′} ≤ s′. By (~3), either s = ⊥ or
s~ {s, s′} = s. Either way, s ≤ s′. So s� S = s ∨ s′ = s′ = s~ ↑(S/⊥).

Suppose, instead, that S ⊆ {⊥}. Then, by (~1), s′ = (s~∅) = ⊥. So s′ ≤ s =
s ∨ s′ = s′ = s� S.

Next, we show that � satisfies (�1)− (�5).

By Lemma 1, (~1) and (~2), s � S ∈ ↑(S/⊥), if S ̸⊆ {⊥}. It follows that if
S ̸⊆ {⊥} there is some s′ ∈ S/⊥ such that s � S ≥ s′. So � satisfies (�1).
Trivially, s ∨ (s~ ↑(S/⊥)) ≥ s. So � satisfies (�2). Assume s ∈ (S/⊥). Then,
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by (~3), s ~ (S/⊥) = s. It follows that s � S = s ∨ (s ~ (S/⊥)) = s. So �
satisfies (�3).

Assume that S ∩ ↓(s� S ∩ S′) ̸⊆ {⊥}. We’ll consider two cases. Suppose, first,
that S ∩ S′ ⊆ {⊥}. Since S ⊆ S ∩ S′, it follows that S ⊆ {⊥}. So, by Lemma 1,
s�S = s�S∩S′ = s. So suppose, instead, that S ∩ S′ ̸⊆ {⊥}. Then, by Lemma
1, s� S ∩ S′ = s~ ↑(S ∩ S′/⊥). But, since S ∩ ↓(s� S ∩ S′) ̸⊆ {⊥}, it follows
that s ~ ↑(S ∩ S′/⊥) ∈ ↑(S/⊥). So, by (~4), s ~ ↑(S/⊥) = s ~ ↑(S ∩ S′/⊥).
But, by assumption, S ̸⊆ {⊥}. So, by Lemma 1, s � S = s ~ ↑(S/⊥), and
hence s� S = s� S ∩ S′. So � satisfies (�4).

Finally, assume that S′∩↓(s�↑ S) ̸⊆ {⊥}. It follows that ↑(S′/⊥)∩↓(s�↑ S) ̸⊆
{⊥}. We’ll consider two cases. First, suppose ↑S ⊆ {⊥}. Then s � ↑ S = s.
But since s = s ~ ↑s, it follows from (~6) that s ~ ↑(S′/⊥) ≤ s = s � ↑ S. So
s ∨ (s~ ↑(S′/⊥)) = s� S′ = s = s� ↑ S. So suppose, instead, that ↑S ̸⊆ {⊥}.
Then s�↑ S = s~↑(↑S/⊥) = s~↑(S/⊥). It follows from (~6) and our original
assumption that s ~ ↑(S′/⊥) ≤ s ~ ↑(S/⊥). But, by the above reasoning, we
also know s ≤ s~↑(S/⊥). So s∨ (s~↑(S′/⊥)) = s�S′ ≤ s~↑(S/⊥) = s�↑ S.
So � satisfies (�5).

ii. We show that #+ satisfies (#+1)− (#+5).

That #+ satisfies (#+1) follows immediately from (~1). That #+ satisfies (#+2)
follows from (~1) and (~3). That #+ satisfies (#+3) follows immediately from
(~4). Suppose s #+ (S ∩S′) < s′ ≤ s #+ S. Then s′ ̸∈ (S ∩S′)∩ ↓s, by (~5). But
s′ ∈ ↓(s #+ S) ⊆ ↓s. So s′ ̸∈ S ∩ S′. So #+ satisfies (#+4).

Assume that ↓s ∩ (S ∩ S′) = ↓(s #+ S) ∩ S′ ̸= ∅. It follows that (↓s) ∩ S ̸⊆ {⊥}.
So s ∈ ↑((↓s) ∩ S)). Furthermore, since ↓s ̸⊆ {⊥}, s ̸= ⊥. So, by (~3), it
follows that ↓(s ~ ↑((↓s) ∩ S)) = ↓s. Combining this with our assumption, it
follows that ↓(s~ ↑((↓s) ∩ S)) ∩ (S ∩ S′) = ↓(s~ (↓s) ∩ S) ∩ S′ ̸⊆ {⊥}. So, by
(~7), we have that (s~ (↓s) ∩ S)~ S′ = s~ (((↓s) ∩ S) ∩ S′). Or, equivalently,
(s #+ S)~ S′ = s #+ S ∩ S′.

By (~3), we have that s #+ S = (s #+ S)~ ↑(s #+ S). Since ↓(s #+ S) ∩ S′ ̸⊆ {⊥},
it follows from (~6) that (s #+ S) ~ S′ ≤ s #+ S = (s #+ S) ~ ↑(s #+ S). So, by
(~1), (s #+ S)~ S′ ∈ ↓(s #+ S) ∩ S′. Accordingly, by (~4), we can conclude that
(s #+ S) ~ (↓(s #+ S) ∩ S′) = (s #+ S) ~ S′. Putting the steps together, we get
that (s #+ S) #+ S′ = s #+ S ∩ S′. So #+ satisfies (#+5).

iii. Finally, we show that for an arbitrary s and S: s~ S = (s� S) #+ S.

Using Lemma 1, we consider two cases. Suppose S ⊆ {⊥}. Observe that by
(~1), for any s′, s′ ~ S′ = ⊥, if S′ ⊆ {⊥}. So (s � S) ~ (↓s ∩ S) = s ~ S = ⊥.
Suppose instead that S ̸⊆ {⊥}. Then s � S = s ~ ↑(S/⊥). We’re going to use
(~7) to prove that s~ S = (s~ ↑(S/⊥))~ (↓(s~ ↑(S/⊥)) ∩ S). By (~1), (~2)
and (~5), if S ̸⊆ {⊥}, then for all s: s ~ (S/⊥) = s ~ S. So it will suffice to
show that s~ (S/⊥) = (s~ ↑(S/⊥))~ ↓(s~ ↑(S/⊥)) ∩ (S/⊥).
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Observe that ↑X ∩X = X. So it follows that that ↓(s ~ ↑↑(S/⊥)) ∩ ↑(S/⊥) ∩
(S/⊥) = ↓(s~↑(S/⊥))∩(S/⊥). Furthermore, since S ̸⊆ {⊥}, it follows from(~1)
and (~2) that ↓(s ~ ↑(S/⊥)) ∩ (S/⊥) ̸⊆ {⊥}. So the antecedent of (~6) is
satisfied (with S = ↑(S/⊥) and S′ = (S/⊥)). Accordingly, by (~6), we have
that s~ ↑(S/⊥) ∩ (S/⊥) = s~ (S/⊥) = (s~ ↑(S/⊥))~ (S/⊥).

Finally, we need to show that (s ~ ↑(S/⊥)) ~ (S/⊥) = (s ~ ↑(S/⊥)) ~ (↓(s ~
↑(S/⊥)) ∩ (S/⊥)) = (s ~ ↑(S/⊥)) #+ (S/⊥). Observe that since S ̸⊆ {⊥}, it
follows that (S/⊥) ∩ ↓(s ~ ↑(S/⊥)) ̸⊆ {⊥}. By (~3), since s ~ ↑(S/⊥) ̸= ⊥, it
follows that (s ~ ↑(S/⊥)) ~ ↑(S/⊥) = s ~ ↑(S/⊥). So, by (~6), we know that
(s~↑(S/⊥))~(S/⊥) ∈ ↓((s~↑(S/⊥)~↑(S/⊥)) = ↓(s~↑(S/⊥)). But, equally, by
(~1), (s~↑(S/⊥))~(S/⊥) ∈ (S/⊥). So (s~↑(S/⊥))~(S/⊥) ∈ ↓(s~↑(S/⊥))∩
(S/⊥). Accordingly, by (~4), we can conclude that (s ~ ↑(S/⊥)) ~ (S/⊥) =
(s~ ↑(S/⊥))~ (↓(s~ ↑(S/⊥)) ∩ (S/⊥)).

Putting the steps together, we get that s ~ (S/⊥) = (s ~ ↑(S/⊥)) ~ ↓(s ~
↑(S/⊥)) ∩ (S/⊥) = (s� S) #+ S. But, as observed above, if S ̸⊆ {⊥}, it follows
that s~ S = s~ (S/⊥). So s~ S = (s� S) #+ S.

(b)⇒(c): For arbitrary � and #+ , let σ : S → P(S) and 4 be defined as follows.

• σ(s) = {ŝ0, ŝ1...}, where ŝ0, ŝ1, ... is a series such that:

◦ ŝ0 = s;
◦ ŝn = s� ((↓ŝn−1)/⊤).

• ši 4 šj iff i ≥ j, where š0, š1..., is a series such that:

◦ š0 = ⊤ #+ S
◦ šn = ⊤ #+ S/{š1, ..., šn−1}

To prove (b)⇒(c), we need to show that:

i. σ is a mapping from states to associated fallback orders.

ii. 4 is a refinement of ≤.

iii. For all s, S: (s� S) #+ S = Sup4(S ∩ ↓(
∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}}))

i. Trivially,
∧
σ(s) = s. So we need to show that for all s, σ(s) is ordered by ≤.

For the base case, observe that ŝ0 ≤ s� (↓s/⊤) = ŝ1, by (�2), and ŝ1 ̸= ⊥, by
(�1). Suppose, for induction, ŝi−1 ≤ ŝi and ŝi ̸= ⊥. So, ↓ŝi−1 ⊆ ↓ŝi. But, by
(�1), ŝi+1 = s� (↓ŝi/⊤) /∈ (↓ŝi/⊤). So, it follows that ŝi+1 ̸∈ (↓ŝi−1/⊤), either.
By (�1), we know that ŝi+1 ̸= ⊥. So ŝi+1 ∈ (↓ŝi−1/⊤ ∩ ↓(s � ↓ŝi/⊤)) ̸⊆ {⊥}.
It follows, by (~5), that ŝi = (s� ↓ŝi−1/⊤) ≤ (s� ↓ŝi/⊤) = ŝi+1.

ii. First, we prove that S is totally ordered by 4. It suffices to show that for
each s ∈ S, there is some i ∈ N such that s = ši. Let Sn = {š0, ..., šn}. For an
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arbitrary s, consider the chain X = {Sj |s /∈ Sj}, totally ordered by inclusion.
Trivially, S is an upper bound on X. So, by Zorn’s lemma, X has a maximal
element, Sk. Suppose, for redutio, ⊤ #+ Sk ̸= s. Then Sk was not maximal in X,
since by construction Sk ⊂ ({s #+ Sk} ∪ Sk) = Sk+1 ∈ X. So s = šk+1 = s #+ Sk.
But s was arbitrary. So S is totally ordered by 4.

Next, we prove that ≤ is included in 4. Suppose, for reductio, that s ̸= s′,
s < s′ but s ̸≺ s′. Since ≺ is (weakly) connected, it follows that s′ ≺ s. So
there is some i such that s, s′ /∈ Si and ⊤ � (S/Si) = s < s′ ≤ ⊤ #+ S. But,
since (S/Si) ⊆ S, by (#+4) we have that s′ /∈ (S/Si). Contradiction. So for
distinct s and s′ : if s < s′, then s ≺ s′. But ≤ and 4 are both reflexive and
antisymmetric. So ≤⊆4.

iii. Finally, we prove that for all s and S: (s � S) #+ S = Sup4(S ∩ ↓
∧
{s′ ∈

σ(s) : ↓s′ ∩ S ̸⊆ {⊥}}). We consider two cases. Suppose S ⊆ {⊥}. Then∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}} ∪ {S ⊆ {⊥}} =

∧
∅ = ⊤. Since S ⊆ {⊥},

Sup4(S ∩ ↓⊤) = ⊥. But observe that for all s, where S ⊆ {⊥}, s #+ S = ⊥, by
(#+1). So (s� S) #+ S = ⊥ = Sup4(S ∩ ↓

∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}}).

So suppose, instead, S ̸⊆ {⊥}. We proceed in two steps, by showing that for
arbitrary s and S ̸⊆ {⊥}:

i. s� S =
∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}};

ii. s #+ S = Sup4(S ∩ ↓s).

iii.i. Since S ̸⊆ {⊥}, there is some least i such that ŝi ∈ σ(s) and (↓ŝi)∩S ̸⊆ {⊥}.
Since ŝi is least, ↓ŝi−1 ∩ S ⊆ {⊥}. So it follows that (↓ŝi−1/⊤) ⊆ ↓ŝi−1 ⊆
(S/⊥). Hence, by elementary set theory, (↓ŝi−1/⊤) = (↓ŝi−1/⊤) ∩ (S/⊥). By
construction, ŝi = s�((↓ŝi−1/⊤)∩(S/⊥)). So (S/⊥)∩↓(s�(↓ŝi−1/⊤)∩(S/⊥)) ̸⊆
{⊥}. Accordingly, the antecedent of (�4) is satisfied, with S = (S/⊥) and
S′ = (↓ŝi−1/⊤). It follows that s � (S/⊥) = s � (↓ŝi−1/⊤) = ŝi. Finally, by
(�1), we know that ↓(s�S)∩(S/⊥) ̸⊆ {⊥}. So, by a further application of (�4),
s � S = s � S/⊥ = ŝi. But, by hypothesis, ŝi =

∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}}.

So s� S =
∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}}.

iii.ii.Next, we show s #+ S = Sup4(S ∩ ↓s). We start by proving that ⊤ #+
S ∩ ↓s = s #+ S. We’ll consider two cases. Suppose S ∩ ↓s ⊆ {⊥}. Then
⊤ #+ S ∩ ↓s = ⊥ = s #+ S ∩ ↓s, by (#+1).

So suppose, instead, that S ∩ ↓s ̸⊆ {⊥}. Observe that, by (#+2) and (#+4),
(⊤ #+ ↓s) ̸< s ≤ (⊤ #+ ↓⊤) = ⊤. But, by (#+1), ⊤ #+ ↓s ∈ ↓s. So (⊤ #+ ↓s) = s.
So it follows that (↓⊤)∩ (S ∩↓s) = S ∩↓(⊤ #+ ↓s) = S ∩↓s ̸⊆ {⊥}. Accordingly,
by (#+4) and commuting ∩, we have that ⊤ #+ (S ∩ ↓s) = (⊤ #+ ↓s) #+ S = s #+ S.

So we need to prove that ⊤ #+ (S ∩ ↓s) = Sup4(S ∩ ↓s). As above, let Sn =
{š0, ..., šn}. Consider the chain Y = {Sj |(S∩↓s)∩Sj = ∅}, ordered by inclusion.
By Zorn’s lemma, Y has some maximal element Sk =

∪
Y . Since Sk is maximal,

it follows that (⊤ #+ Sk) ∈ S ∩ ↓s, since otherwise Sk ∪ (⊤ #+ Sk) = Sk+1 ∈ Y .
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Accordingly, it follows that (⊤ #+ Sk) = šk+1 = Sup4(S ∩ ↓s). By construction,
(S ∩ ↓s) ⊆ Sk, and, hence, (S ∩ ↓s) = (S ∩ ↓s) ∩ Sk. It follows, by (#+3), that
⊤ #+ (S ∩ ↓s) = ⊤ #+ (S ∩ ↓s) ∩ Sk = ⊤ #+ Sk. So s #+ S = ⊤ #+ (S ∩ ↓s) =
Sup4(S ∩ ↓s).

Putting together iii.i-ii, we can conclude that (s #+ S) #+ S = Sup4(S∩↓
∧
{s′ ∈

σ(s) : ↓s′ ∩ S ̸⊆ {⊥}})

(c)⇒ (b): For an arbitrary refinement, 4, and mapping from states to associ-
ated fall back orders, σ, let ~ be defined such that:

s~ S = Sup4(S ∩ ↓(
∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}}))

We need to show that ~ satisfies (~1)− (~7). For ease of comprehension, we’ll
let fσ(s, S) abbreviate ↓(

∧
{s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}}).

If S ∩ fσ(s, S) = ∅, then Sup4(S ∩ fσ(s, S)) = ⊥. Conversely, since 4 is total,
if S ∩ fσ(s, S) ̸= ∅, Sup4(S ∩ fσ(s, S)) ∈ S. So ~ satisfies (~1).

Suppose S ̸⊆ {⊥}. Then {s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}} ̸= ∅. Since σ(s) is
a chain ordered by ≤ and S is complete, σ(s) satisfies the descending chain
condition. So every non-empty subset of σ(s) contains its own meet. But,
since fσ(s, S) is the downset of an element of {s′ ∈ σ(s) : ↓s′ ∩ S ̸⊆ {⊥}},
it follows that (S ∩ fσ(s, S)) ̸⊆ {⊥}. Since 4 is a refinement of ≤, it follows
Sup4(S ∩ fσ(s, S)) > ⊥. So ~ satisfies (~2).

Suppose ⊥ < s ∈ S. Then fσ(s, S) = ↓s. Since 4 is a refinement of ≤, it follows
Sup4(S ∩ fσ(s, S)) = s. So ~ satisfies (~3).

Suppose Sup4(S ∩ fσ(s, S)) ∈ S ∩ S′. Then S ∩ S′ ̸= ∅. Suppose S ⊆ {⊥}.
Then, since ∅ ⊂ (S ∩ S′) ⊆ S ⊆ {⊥}, it follows S = S ∩ S′ = {⊥}. So
fσ(s, S) = fσ(s, S ∩ S′) = ↓

∧
∅ =↓ ⊤. So suppose, instead, that S ⊆ {⊥}.

Then, since ⊥ < Sup4(S ∩ fσ(s, S)) ∈ S ∩ S′, it follows that f(s, S) ∩ (S ∩
S′) ̸⊆ {⊥}. So fσ(s, S ∩ S′) = fσ(s, S). Since Sup4(S ∩ fσ(s, S)) ∈ S ∩ S′

and Sup4(S ∩ fσ(s, S)) ∈ fσ(s, S), it follows s ~ S = Sup4(S ∩ fσ(s, S)) =
Sup4(S ∩ S′ ∩ fσ(s, S ∩ S′)) = s~ S ∩ S′. So ~ satisfies (~4).

Suppose Sup4((S ∩ S′) ∩ fσ(s, S ∩ S′)) < s′ ≤ Sup4(S ∩ fσ(s, S)). We’ll show
s′ ̸∈ S∩S′. Since ⊥ ≤ Sup4((S∩S′)∩fσ(s, S∩S′)) < s′ ≤ Sup4(S∩fσ(s, S)),
it follows s′ ̸= ⊥ and S ̸⊆ {⊥}. Since 4 is a refinement of ≤, Sup4((S ∩ S′) ∩
fσ(s, S ∩ S′))) ≺ s′. So s′ ̸∈ (S ∩ S′) ∩ fσ(s, S ∩ S). Since s′ ≤ Sup4(S ∩
fσ(s, S)) ∈ fσ(s, S) and fσ(s, S) is downward closed, s′ ∈ fσ(s, S). But since
S∩S′ ⊆ S, it follows that fσ(s, S) ⊆ fσ(s, S∩S′). So s′ ̸∈ S∩S′. So ~ satisfies
(~5).

Suppose S′ ∩ ↓(Sup4(↑S ∩ fσ(s, ↑S))) ̸⊆ {⊥}. It follows that S ̸= ∅, (since
if S = ∅ = ↑∅, then ↓(Sup4(↑S ∩ fσ(s, ↑S))) = ↓Sup4(∅) = ↓{⊥} ⊆ {⊥})
and S′ ̸⊆ {⊥}. But observe that if S ̸= ∅, then

∧
{s′ ∈ σ(s) : ↓s′ ∩ ↑S ̸⊆

{⊥}} ∈ ↑S. So ↓(Sup4(↑S ∩ fσ(s, ↑S))) = ↓(Sup4(fσ(s, ↑S))) = fσ(s, ↑S).
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Since S′ ∩ fσ(s, ↑S) ̸⊆ {⊥}, it follows that {⊥} ⊂ fσ(s, S′) ⊆ fσ(s, S). So
Sup4(S′ ∩ fσ(s, S′)) ≤ fσ(s, ↑S) = Sup4(↑S ∩ fσ(s, ↑S)). So ~ satisfies (~6).

Finally we’ll prove that ~ satisfies (~7). Suppose ↓(Sup4(↑S ∩ fσ(s, ↑S))) ∩
(S ∩ S′) = ↓(Sup4(S ∩ fσ(s, S))) ∩ S′ ̸⊆ {⊥}. Let s∗ = Sup4(S ∩ fσ(s, S)).
By supposition, we have that ↓(s∗) ∩ S′ ̸⊆ {⊥}. So s∗ is the least element in
σ(s∗) such that ↓s∗∩S′ ̸⊆ {⊥}. Hence,fσ(Sup4(S∩fσ(s, S)), S′) = ↓(Sup4(S∩
fσ(s, S))). As above, ↓(Sup4(↑S∩fσ(s, ↑S))) = fσ(s, S), and hence, fσ(s, S)∩
(S ∩S′) ̸⊆ {⊥}.’ So, since S ∩S′ ̸⊆ {⊥}, it follows that fσ(s, S) = fσ(s, S ∩S′).

So our original supposition simplifies to the identity fσ(s, S) ∩ (S ∩ S′) = S′ ∩
↓Sup4(S ∩ fσ(s, S)). It follows immediately that Sup4((S ∩ S′) ∩ fσ(s, S)) =
Sup4(S′ ∩ ↓(Sup4(S ∩ fσ(s, S)))).

But, by the above, s~(S∩S′) = Sup4((S∩S′)∩fσ(s, S∩S′)) = Sup4((S∩S′)∩
fσ(s, S)) And, similarly, (s~S)~S′ = Sup4(S′∩fσ(Sup4(S∩fσ(s, S)), S′)) =
Sup4(S′ ∩ ↓(Sup4(S ∩ fσ(s, S)))). So s~ S ∩ S′ = (s~ S)~ S′. So ~ satisfies
(~7).
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